IEEE MCSoC-2024 Best Paper Award

The paper “Reducing Data Bottlenecks in Distributed, Heterogeneous Neural Networks,” led by undergraduate researcher Ruhai Lin, has been awarded the 17th IEEE Multicore and Many-core Systems-on-Chip Best Paper Runner-Up Award.

Read more about the paper and MCSoC.

Prof. Jason Eshraghian Delivering Plenary Talk at IEEE MCSoC: “Large-Scale Neuromorphic Computing on Heterogeneous Systems”

In the realm of large-scale model training, the efficiency bottleneck often stems from the intensive data communication required between GPUs. Drawing inspiration from the brain’s remarkable efficiency, this talk explores neuromorphic computing’s potential to mitigate this bottleneck. As chip designers increasingly turn to advanced packaging technologies and chiplets, the models running on these heterogeneous platforms must evolve accordingly. Spiking neural networks, inspired by the brain’s method of encoding information over time and its utilization of fine-grained sparsity for information transfer, are perfectly poised to extract the benefits (and limitations) imposed in heterogeneous hardware systems. This talk will delve into strategies for integrating spiking neural networks into large-scale models and how neuromorphic computing, alongside the utilization of chiplets, can surpass the current capabilities of GPUs, paving the way for the next generation of AI systems.

“Autonomous Driving with Spiking Neural Networks” by Ph.D. Candidate Rui-Jie Zhu Accepted in NeurIPS 2024

Autonomous driving demands an integrated approach that encompasses perception, prediction, and planning, all while operating under strict energy constraints to enhance scalability and environmental sustainability. We present Spiking Autonomous Driving (\name{}), the first unified Spiking Neural Network (SNN) to address the energy challenges faced by autonomous driving systems through its event-driven and energy-efficient nature. SAD is trained end-to-end and consists of three main modules: perception, which processes inputs from multi-view cameras to construct a spatiotemporal bird’s eye view; prediction, which utilizes a novel dual-pathway with spiking neurons to forecast future states; and planning, which generates safe trajectories considering predicted occupancy, traffic rules, and ride comfort. Evaluated on the nuScenes dataset, SAD achieves competitive performance in perception, prediction, and planning tasks, while drawing upon the energy efficiency of SNNs. This work highlights the potential of neuromorphic computing to be applied to energy-efficient autonomous driving, a critical step toward sustainable and safety-critical automotive technology. Our code is available at https://github.com/ridgerchu/SAD.
Link: https://arxiv.org/abs/2405.19687