New Preprint: “Autonomous Driving with Spiking Neural Networks” by Ph.D. Candidate Ruijie Zhu

Spiking Autonomous Driving

From the guy who built the first spiking language generation model, Rui-Jie Zhu has found a way to make spiking neural networks (SNNs) perform end-to-end autonomous vehicle control. This model takes a 6-camera input and integrates perception, prediction and planning together into a single model with approximately 75x less operations than ST-P3 at comparable performance.

Making SNNs push beyond toy datasets has been a tough time, but we’ve put a lot of effort into showing how to scale to challenging, real-world problems. The next step for this model is to push it into a closed-loop system. Deploying models like this on low-latency neuromorphic hardware can enable fast response times from sensor to control. This is necessary if we want to bridge the sim2real gap. I.e., by the time you take action, you don’t want your world to have changed by too much.

Rather than forcing “spiking” into applications for the sake of it, it’s important to take it to domains where there is a computational benefit – and I think this is one of them.

Preprint: https://arxiv.org/abs/2405.19687

Code: https://github.com/ridgerchu/SAD